WORKSHOP ON "DEVELOPING SMART AND GREEN PORTS"

Center for Research, Innovations and Entrepreneurship at the Faculty of Maritime studies

Prof. dr Danilo Nikolić

University of Montenegro, Faculty of maritime studies

27.04.2023 Kotor, Montenegro

"PrOmoting Resilient, Sustainable, and Smart Transport and logistic activities in the South Adriatic Area - PORTS PLUS/No. 552/SMALL/CAPITALIZATION restricted procedure"

Center for Research, Innovation and Entrepreneurship @UoM/PFK

Activities within Center:

- Research and Innovation;
- Project activities;
- Provider of Life Long Learning;
- Supporting student start ups;
- Supporting activities between academia and industry, etc.

Labs/equipment:

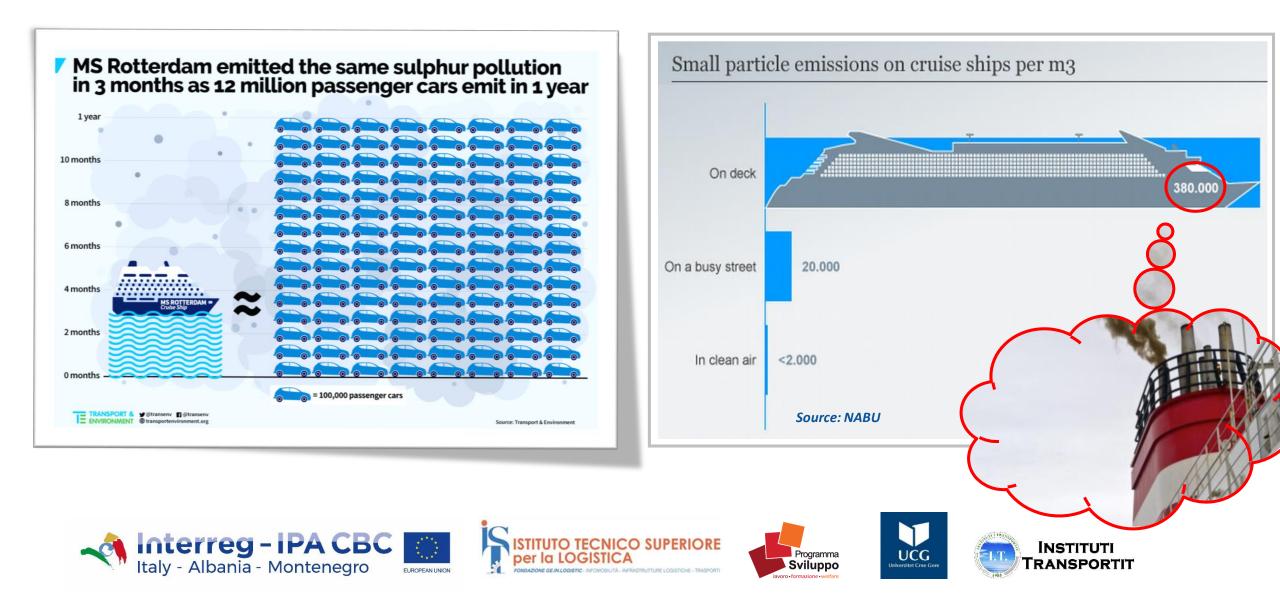
- SMART BAY Lab;
- Marine fuels laboratory;
- 3D Lab;
- Underwater ship archeology, etc

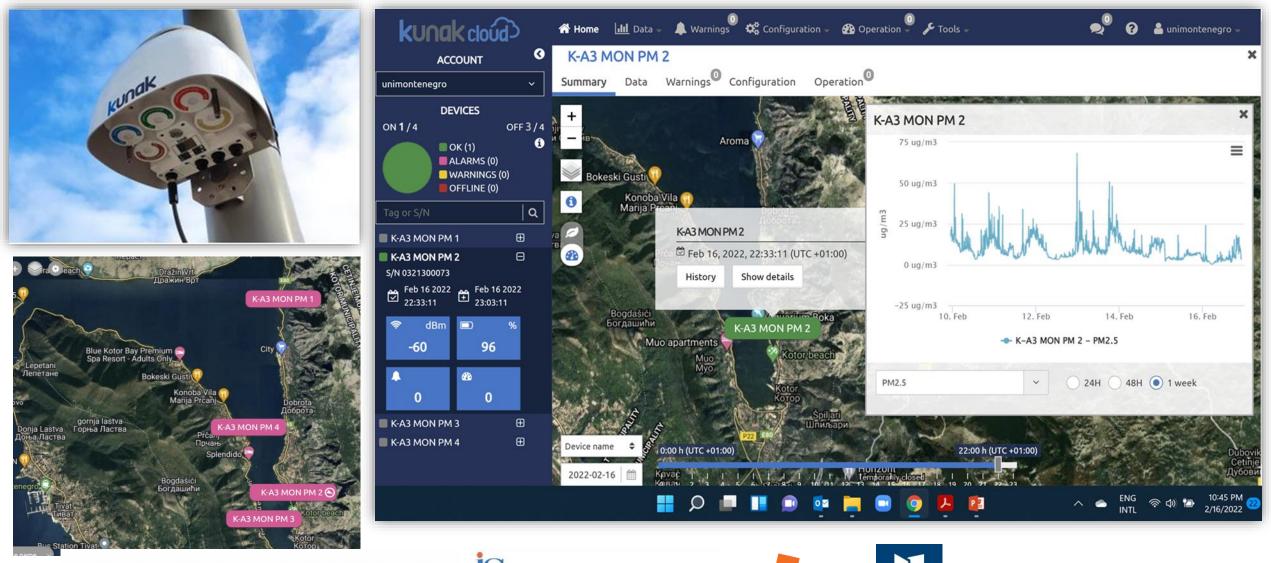
Personnel:

- Prof. dr Danilo Nikolić, coordinator
- MSc Radmila Gagić
- PhD Maja Škurić
- MSc Darko Kovačević

Managing International Projects

PROGRAM	PROJECT TITLE	ROLE	YEAR	TOTAL BUDGET	PFK BUDGET
Erasmus + CBHE	Development of Regional Joint Master Program in Maritime Environmental Protection and Management (MEP&M)	С	2021 -2024	845,188.00€	216,000.00€
Interreg IPA	Protecting underwater heritage through its digitalization and valorisation as a novel touristic offer (WRECKS4ALL)	C	2020 - 2022	1,016,778.32€	334,737.17€
Tempus	Modernizing and Harmonizing Maritime Education in Montenegro and Albania (MArED)	C	2013 - 2017	1,154,776.80€	316,181.47€
Erasmus + CBHE	Sustainable development of BLUE economies through higher education and innovation in Western Balkan Countries (BLUEWBC)	Р	2020 - 2023	985,755.00€	207,766.00€
Interreg IPA	Innovative Systems to enhance Antifraud Customs Controls (ISACC)	Р	2020 - 2022	996,997.04 €	148,356.00€
Interreg IPA	Partnership for the Observation and study of new Routes and Transnational Sea- highways (PORTS)	Р	2018 - 2020	109,1053.08	136,755.00€
Interreg IPA	Partnership for the prOmotion of a maRiTime cross-border Strategy (PORTS 4.0)	Р	2020 - 2021	94,000.00 €	24,000.00€
Interreg IPA	PrOmoting Resilient, Sustainable, and Smart Transport and logistic activities in the South Adriatic Area (PORTS PLUS)	Р	2022 - 2023	94,000.00 €	11,000.00€
Tempus	Development of Sustainable Interrelations between Education, Research and Innovation at WBC Universities in Nanotechnologies and Advanced Materials where Innovation Means Business (WIMB)	Р	2013 - 2017	1,200,000.00 €	152,000.00€
HERD	Montenegro Sustainable Maritime Competence Initiative	Р	2013 – 2016	1,400,000.00€	900,000.00€
HERIC	Knowledge transfer for increased maritime competences in Montenegro (EDUMAR)	Р	2016 - 2017	55,000.00€	55,000.00€
TOTAL:					2,501,795.64 €


SMART BAY LAB



SMART BAY LAB – KUNAK PM, O₃, CO, NOx, SO₂ sensors

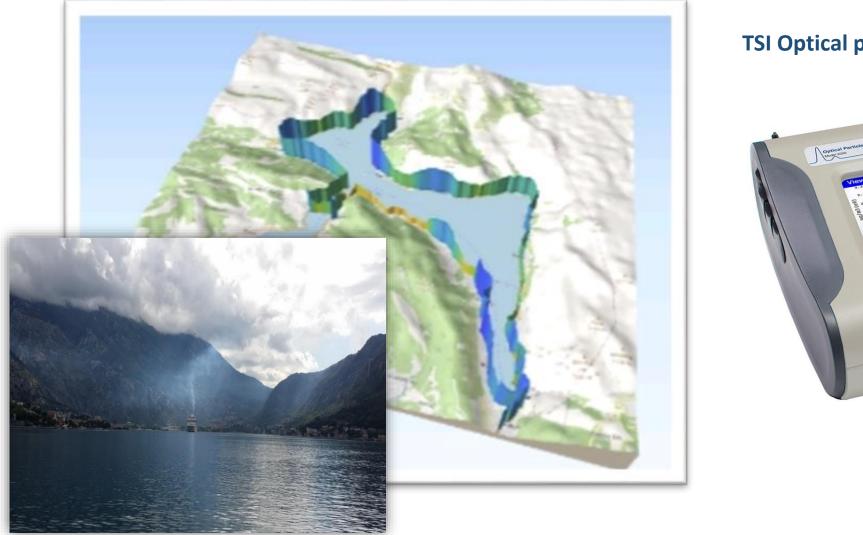
STITUTO TECNICO SUPERIORE

ITÀ - INFRASTRUTTURE LOCUSTICHE - TRASP

per la LOGISTICA

Programma

Sviluppo


UCG

INSTITUTI

TRANSPORTIT

SMART BAY LAB – Mobile PM sizer

TSI Optical particle sizer (OPS) 3330

SMART BAY LAB - PM Concentration in Kotor bay related to cruise ships

atmosphere MDPI Atmosphere 2022, 13, 1819 Article Establishing Correlation between Cruise Ship Activities and Ambient PM Concentrations in the Kotor Bay Area Using a Low-Cost Sensor Network Radmila Gagic 1,4, Maja Skuric 1, Gordana Djukanovic 2 and Danilo Nikolic 1 1 Center for Research, Innovation and Entrepreneurship, Faculty of Maritime Studies Kotor, University of Montenegro, 85330 Kotor, Montenegro ² Environmental Protection Agency of Montenegro, 81000 Podgorica, Montenegro K 4 - PM2.5 AVG24H + K3 - PM2.5 AVG24H K4 - PM10 AVG24H + K1 - PM10 AVG24H K1 - PM2.5 AVG24H
K2 - PM2.5 AVG24H
K1 - PM2.5 AVG24H
K1 - PM2.5 AVG24H * Correspondence: radmilag@ucg.ac.me - K2 - PM10 AVG24H - K2 - W Speed AVG K1 - PM10 AVG24H Abstract: The analysis of cruise ships is focusing on port areas where they may represent a signifi-(b) cant source of anthropogenic emissions. In order to determine the correlation between cruise ship Figure 8. Average wind speed vs. PM10 (a) and PM25; (b) 24 h average over the experimental peactivities (hoteling and maneuvering) in ports with the ambient concentration of pollutants associated with marine diesel fuel combustion, the low-cost sensors are finding their market share due to riod 20 August-15 September 2022. lower prices compared to the referent ones. In this study, a network of four low-cost PM sensors was used to determine the correlation between ambient PM2s and PM10 mass concentrations with cruise ship activities in the Kotor Bay area during 27 days in the peak summer season, with a 10min resolution. Recorded data and the Openair model were used to investigate the potential relationship between cruise ship operations and temporal fluctuations in PM concentrations in the ambient air. Additionally, an Tier 3 methodology developed through the European Monitoring and Citation: Gagic, R.; Skuric, M.; Evaluation Programme of the European Environmental Agency (EMEP/EEA) was applied in order Diukanovic, G.: Nikolic, D. Establishing Correlation between to estimate the total cruise ship PM emissions. The study has shown that weather conditions play a Cruise Ship Activities and Ambient significant role in local PM concentrations, so that, with predominant ENE wind directions, the west PM Concentrations in the Kotor Bay side of the Bay experienced on average higher concentrations of both PM25 and PM10. Rain precipi-Area Using a Low-Cost Sensor tation and higher winds tend to decrease rapidly ambient PM concentrations. Higher PM levels are Network, Atmosphere 2022, 13, 1819. associated mainly with lower wind speeds and the inflows from neighboring berths/anchorages. https://doi.org/10.3390/ During the maneuvering (arrival and departure) of cruise ships, higher spikes in PM values were atmos13111819 detected, being more visible for PM10 than PM25. A significant correlation between daily average Academic Editors: Yuanqing Zhu PM concentrations and cruise ships' daily estimated PM emission was not found. As a result, higher and Long Liu temporal resolution demonstrated a stronger correlation. PM in ANG1H (p Received: 3 October 2022 PN25 JUSIN Lugr Keywords: cruise ship emission; port air pollution; PM25; PM10; low-cost sensors; sensor network Accepted: 29 October 2022 (b) Published: 1 November 2022 (a) Publisher's Note: MDPI stays neu Figure 9. Bivariate polar plot of PM25 (a) and PM10 (b) concentrations at the K4 measuring location tral with regard to jurisdictional during experimental period from 20 August to 15 September 2022. Each plot's center indicates a 1. Introduction claims in published maps and institu wind speed of zero, which rises radially outward. The color scale indicates the concentration of PM. The environmental effect of shipping should be assessed in the context of port sites, tional affiliations. since air quality in the surrounding area is significantly impacted, resulting in serious © 0 Figure 10 shows both the estimated total cruise ship PM emission and PM10/PM25 repercussions for human health for people living in coastal areas [1]. Ships produce conambient concentrations for the observed period of time. For better visibility, a 7-day pesiderable amounts of pollutants into the neighboring environment while berthed, even Copyright: © 2022 by the author. riod was selected, from 29 August to 4 September 2022. When evaluating the data, it is three to five times more than when underway [2]. In some cases, ships in ports can account Licensee MDPI, Basel, Switzerland, for up to 77% of total emissions [3,4]. worth noting that the cruise ship activities, linked to the realization of the ship's opera-This article is an open access article Particulate matter (PM) generated by ships' diesel engines has a range of adverse tional phases (arrival/hoteling/departure), as described in Section 2.3, and estimated PM distributed under the terms and health and environmental-related consequences. It is estimated that shipping-related emissions (Table 2), affect the height of the PM ambient concentration spikes. This is more conditions of the Creative Commons. Attribution (CC BY) license PM2.5 emissions cause about 60,000 premature cardiac and lung cancer deaths worldwide evident for PM10 than PM25. each year [5]. Another study has shown that ships account for over 6 million childhood (https://creativecommons.org/license When observing the whole experimental period, the daily average values of both asthma cases and 250,000 deaths annually [6]. s/bv/4.0/).

PM2.5 and PM10 did not significantly correlate with the daily cruise ship's estimated total PM emission (Figure 11).

As also previously suggested by [33], a cruise ship's direct impact on PM concentration is best assessed using a higher temporal resolution.

10 of 13

Atmosphere 2022, 13, 1819. https://doi.org/10.3390/atmos13111819

www.mdpi.com/journal/atmosphere

SMART BAY LAB – Prediction of pollutant and GHG emission from ships in Kotor bay

year)	110			110.0	- D1 (a a b
Month	NOx	CO	CO_2	VOC	PM	SOx ^a	SOx ^b
January	1.017	3.374	12.097	0.772	0.045	0.0378	2.021
February	1.54	5.122	183.622	1.172	0.069	0.0574	3.064
March	1.23	4.04	145.643	0.923	0.055	0.0455	2.43
April	13.469	32.13	1,348.232	7.101	0.506	0.4213	22.499
May	34.074	74.088	3,264.452	16.175	1.224	1.0201	54.476
June	40.071	92.154	3,941.245	20.272	1.478	1.2316	65.77
July	34.48	75.709	3,318.375	16.552	1.244	1.037	55.375
August	37.082	82.632	3,593.37	18.102	1.348	1.1229	59.964
September	42.686	94.137	4,116.418	20.593	1.544	1.2863	68.693
October	32.982	71.155	3,148.458	15.518	1.181	0.9839	52.54
November	17.127	36.393	1,623.624	7.92	0.609	0.5074	27.094
December	2.74	7.86	301.208	1.774	0.113	0.0941	5.026
Total (tons/year)	258.498	578.794	24,996.744	126.874	9.416	7.8453	418.952

^aEstimation for average sulphur content in fuel of 0.0457% m/m ^bEstimation for average sulphur content in fuel of 2.67% m/m

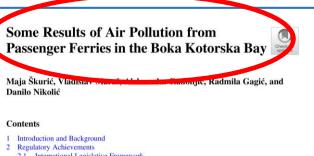
Nikolic et al, DOI 10.1007/698 2016 34,

Estimation of Air Pollution from Ships in the Boka Kotorska Bay

Danilo Nikolić, Radmila Gagic, and Spiro Ivošević

Abstract The Boka Kotorska Bay, with the Port of Kotor, has become one of the most attractive cruising destinations at the Adriatic Sea. It shows not only great potential in terms of economy, but also great danger if environmental issues are taken into consideration. Emission from cruise ships represents majority of anthropogenic emissions of pollutants in this area, since there are no merchant ports and industrial plants in the bay.

In this paper exhaust emission from ships in the Boka Kotorska Bay in 2015 was calculated by using emission estimation methodology. Only cruise ships were taken for research since that is the only shipping activity in the bay, besides yachting. Cruise ship's gross tonnage, marine engine types, marine fuel types, navigation modes and retention times of the ship in the Bay were taken into consideration in the study. Total emissions from cruise ships in the Boka Kotorska Bay area in 2015 were estimated as follows: 258.50 t y^{-1} of NOx, 578.80 t y^{-1} of CO, $24.996.74 \text{ t y}^{-1}$ of CO₂, 126.87 t y^{-1} of VOC, 9.42 t y^{-1} of PM and 7.84 t y^{-1} of SOx in the case when assumed that cruise ships burn low sulphur fuels and 418.95 t y⁻¹ of SOx in the case of high sulphur fuels.


Keywords Air pollution, Boka Kotorska Bay, Cruise ships, Exhaust emission estimation

Contents

- 1 Introduction
- 2 Cruise Ship Traffic in the Boka Kotorska Bay
- 3 Methodology for Quantification of Pollutant Emission

D. Nikolić (2), R. Gagić, and Š. Ivošević University of Montenegro, Maritime faculty Kotor, Dobrota 36, 85330 Kotor, Montenegro e-mail: dannikol@t-com.me; radmilalazarevic@live.ac.me; spiroi@ac.me

A. Joksimović et al. (eds.), The Boka Kotorska Bay Environment, Hdb Env Chem, DOI 10.1007/698 2016 34. © Springer International Publishing Switzerland 2016

- 2.1 International Legislative Framework
- 2.2 National Legislative Framework
- 3 Bottom-Up Methodology: An Observation
- 3.1 Results of the Bottom-Up Approach from Corbett and Farrell
- 3.2 Results of the Bottom-Up Approach from Tzannatos
- 3.3 Specifics of the Bottom-Up Approach Described in Eyring et al.
- 3.4 Activity-Based Method from Nunes et al.
- 3.5 Activity-Based Emissions from Dragović et al.
- 3.6 Applied Methodology in Murena et al.
- 4 Quantification of Ferry Emission in the Boka Kotorska Bay 4.1 Input Data
- 4.2 Load and Emission Factors Determination
- 4.3 Emission Calculation Formulation
- 5 Results
- 6 Conclusion
- References

UCG

Abstract Emission from passenger ships represents a threat especially for a population in the coastal area that is exposed to air pollution due to the port traffic throughput and other frequent activities at the seaside. Passenger ferries are one of the marine small vessels that have a primary role in connecting domicile inhabitants and serves as a favorite mode of transport for short tourist visits. In this chapter, the

Danijela Joksimović, Mirko Đurović, Igor S. Zonn, Andrey G. Kostianoy, and Aleksander V. Semenov (eds.), The Montenegrin Adriatic Coast: Marine Chemistry Pollution, Hdb Env Chem, DOI 10.1007/698_2020_702. © Springer Nature Switzerland AG 2020

M. Škurić (🖂), R. Gagić, and D. Nikolić Faculty of Maritime Studies Kotor, University of Montenegro, Kotor, Montenegro e-mail: mskuric@ucg.ac.me; radmilag@ucg.ac.me; dannikol@t-com.me

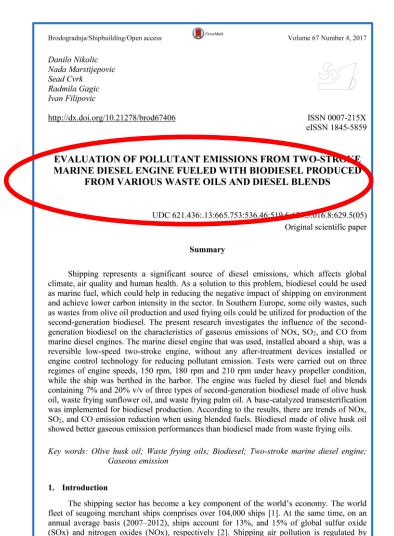
V. Maraš and A. Radoniić Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia e-mail: v.maras@sf.bg.ac.rs; a.radonjic@sf.bg.ac.rs

SMART BAY LAB – Exhaust emission analyser & smoke tester

LOGISTIC

a

TESTO 350 MARITIME



SMART BAY LAB – Renewable fuels

Research on three types of secondgeneration biodiesel made from:

- Olive husk oil;
- Waste sunflower, and
- Waste palm oil from frying.

Biodiesel blends (7%, 20% and 25%) show better emission performance in regard to NOx, SO_2 , CO, and CO_2 than pure low sulfur diesel.

Influence of Biodiesel Blends on Characteristics of Gaseous Emissions from Two Stroke, Low Speed Marine Diesel Engines

Danilo Nikolic, Sead Cvrk, Nada Marstijepovic, Radmila Gagic and Ivan Filipovic

Abstract As a renewable source of energy, biofuels have a favourable impact on the environment and can replace fossil fuels to some extent. Biodiesel is one option for reducing the emission of pollutants and GHG in the shipping sector. By 2030, Lloyd Register predicts a global demand for about 100 million tons of biofuel in shipping, mostly biodiesel. This study investigates the influence of biodiesel blends on the characteristics of gaseous emissions from a two-stroke, low speed marine diesel engine. For this research, a reversible low-speed two-stroke marine diesel engine was used, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speed, 150, 180 and 210 rpm under heavy propeller condition, while the ship was berthed in the harbour. The engine was fuelled with low sulfur diesel fuel and blends containing 7 and 25% v/v of three types of second-generation biodiesel made from cast-off sunflower and palm oil waste from frying. For biodiesel production, a base-catalyzed transesterification was implemented. Biodiesel blends show better emission performance in regard to NOx, SO₂, CO, and CO₂ than pure low sulfur diesel fuel.

Keywords Used frying oils \cdot Biodiesel \cdot Low sulfur diesel fuel \cdot Two-stroke low speed marine diesel engine \cdot Gaseous emission

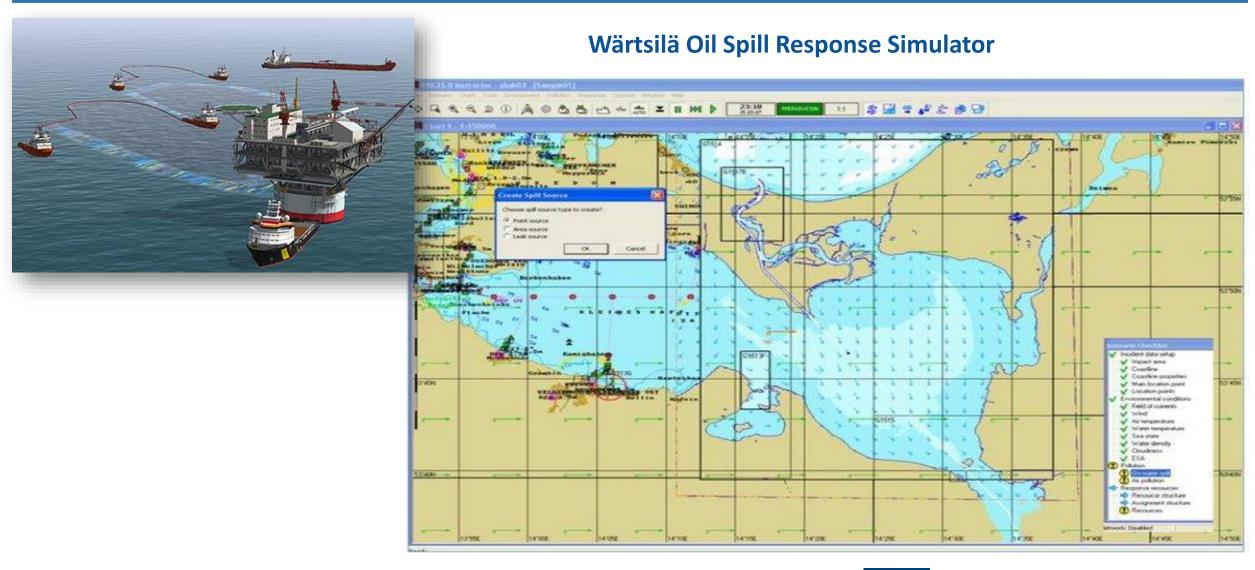
D. Nikolic (⊠) · R. Gagic Maritime Faculty Kotor, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro e-mail: dannikol@t-com.me

S. Cvrk Montenegrin Ministry of Defence, Sector for Logistics, Jovana Tomaševića 29, 81000 Podgorica, Montenegro

N. Marstijepovic Montenegrin Ministry of Interior Affairs, Sector for Emergency Situations, Bulevar Svetog Petra Cetinjskog 22, 81000 Podgorica, Montenegro

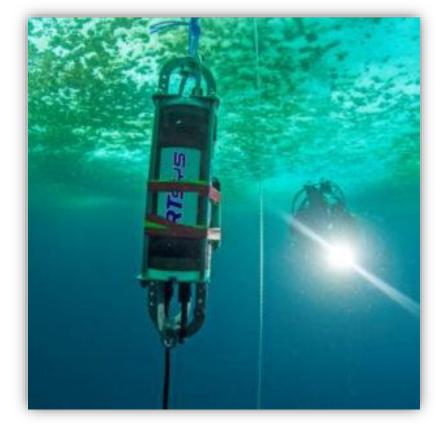
I. Filipovic Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina

© Springer International Publishing AG 2017 E. Pellicer et al. (eds.), Advances in Applications of Industrial Biomaterials, DOI 10.1007/978-3-319-62767-0_3



SMART BAY LAB – Simulations of oil spills

SMART BAY LAB – Equipment for underwater research



SMART BAY LAB – Equipment for underwater research

Underwater acoustic recorder & Hydrophone

LAB FOR LIQUID FUELS

Equipment for fuel and oil quality testing - Accredited

Physical-chemical testing od liquid fuels of petroleum origin

LAB FOR SHIP UNDERWATER ARCHEOLOGY

Ship underwater archeology

3D LAB - Artec Spider 3D Scanner (BLUEWBC)

3D LAB - 3D printer Prusa i3 (BLUEWBC)

3D LAB - Tobii 3 Eye-tracking glasses

T 22

MARINE SIMULATORS

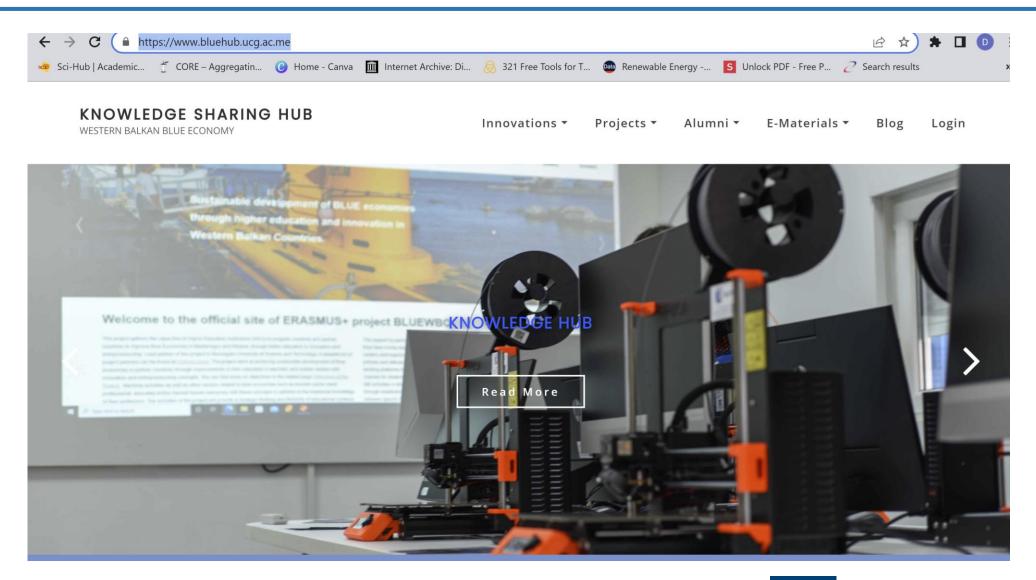
Wärtsilä/Transas Navigation simulator

Wärtsilä/Transas Engine room simulators

Rolls Royce DP Dynamic positioning sim

OSC Offshore simulator

CREATIVITY SPACE



Knowledge hub

Distance learning equipment – Hardware and software for lecture production

A Week of BLUE Challenge

Svrha:

- stvaranje čvršće studentske zajednice;
- kreativni proces;
- sticanje novih znanja;
- pokazivanje talenta;
- implementacija novih ideja;
- start-up projekti.

LIFE LONG LEARNING PROGRAMS Summer schools

Summer school

6-day accredited summer school providing 2 ECTS

SUSTAINABLE DEVELOPMENT OF YACHTING AND CRUISE INDUSTRY

Date: July 3rd – July 8th, 2023 Place: University of Montenegro, Faculty of Maritime Studies Kotor Address: Put I Bokeljske brigade 44, 85330 KOTOR, MONTENEGRO

BACKGROUND

The summer school (Lifelong Learning Program) on "Sustainable development of yachting and cruise industry" started in 2022 as a part of the Erasmus+ CBHE project "Fostering Internationalization at Montenegrin HEIs through Efficient Strategic Planning (IESP)", project No. 609675-EPP-1-2019-1-ME-EPPKA2-CBHE-SP.

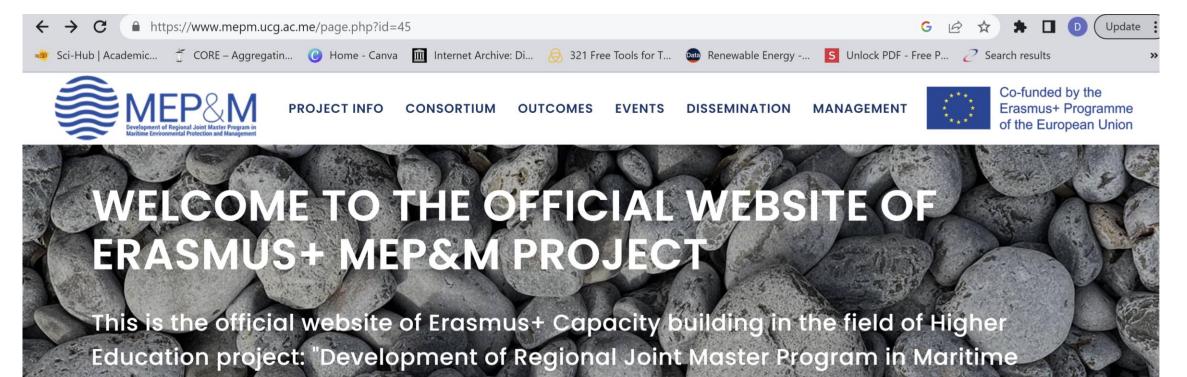
It is Montenegrin first accredited lifelong learning program, as determined by Decision No. 02-607/22 – 51/74P of the national Agency for Control and Quality Assurance of Higher Education on 21.4.2022.

The summer school provides students with 2 ECTS and is conducted in English.

It is organized by the Center for Research, Innovation, and Entrepreneurship at the University of Montenegro, Faculty of Maritime Studies in Kotor.

The lecturers are eminent professors and professionals from Montenegro, Albania, and the European Union.

JOINT MASTER PROGRAM



Joint MSc in Maritime Environmental Protection and Management

Environmental Protection and Management (MEP&M)

project no. 619239-EPP-1-2020-1-ME-EPPKA2-CBHE-JP

Joint MSc in Maritime Environmental Protection and Management

#	Sem.	Course title	# of hours	ECTS	O/E
I	I	Research Skills, Methods and Tools	2+2+0	10	0
2	I	Fundamentals of Environmental Science and Sustainability	2+2+0	10	0
3	I	Introduction to the Blue Economy	2+2+0	10	0
4	II	Marine Ecology and Conservation	2+1+1	10	0
5	II	Marine Environmental Pollution and Prevention	2+1+1	10	0
6	Ш	GHG Emission and Climate Change Mitigation Policies	2+1+1	10	0
7	Ш	Environmental Management Standards and Impact Assessment	2+2+0	10	0
8		Elective Course #1	2+1+1	10	E
9	III	Elective Course #2	2+1+1	10	E
		Sustainable Development of Maritime Transport and Ports			
		Sustainable Development of Coastal Tourism			
		Management of Offshore Energy and Mineral Resources			
		Fisheries Management			
		Integrated Coastal Management			
		Management of Protected Marine Areas And			
		Species			
		Maritime Safety and Security			
		Entrepreneurship and Innovation			
13	IV	Professional Practice/Research		12	
14	IV	Master Degree Thesis		18	

UCG

Thank you for your attention!

Prof. dr Danilo Nikolić

danilo.nikolic@ucg.ac.me

University of Montenegro Faculty of maritime studies www.ucg.ac.me/pfkotor

UCG

